3D SCANNER"'

Efficient, Accurate, \& Reproducible Water Tank Scanning

Automate Setup, Remove Subjectivity

Purpose-built for modern treatment modalities, the 3D SCANNER ${ }^{\text {TM }}$ achieves faster and more accurate commissioning and annual QA with consistent scan orientation and automated setup.

The 3D SCANNER Advantage

The 3D SCANNER is a full 3D dosimetry cylindrical water tank with AutoSetup"'. This feature, along with the elimination of tank shifts, removes scanning subjectivity, saves time, and ensures measurements are reproducible regardless of user.

AutoSetup ${ }^{\text {TM }}$

- Reproducibly and automatically sets detector position at the water surface; levels and aligns tank
- Total time: < 20 minutes

No Tank Shifts

- Position tank once
- 650 mm scan range without moving tank allows for full $40 \times 40 \mathrm{~cm}$ field scans even at 100 cm SSD and 30 cm depth
- Position detector in any relevant 3D location
- Consistent detector orientation without repositioning detector, increasing the accuracy of your scans

Better Data

Optimal signal to noise ratio for smoother scans without processing
Eliminate user setup subjectivity with AutoSetup and no tank shifts

- Consistent detector orientation for in-plane, cross-plane, and diagonal scans
Searchable database for effective data management and sharing

360° of Scanning

Detector Freedom

3D SCANNER offers a diameter drive for consistent detector orientation for in-plane, cross-plane, diagonal, and all other angles throughout the entire 360° circumference. Rotation range of 330° eliminates the need for tank shifts.

The 3D SCANNER system supports off-axis scans with this geometry by combining rotation and diameter movements during the measurement.

Scanning Range

- Ring Range

360° of scanning with consistent detector orientation results in better data and eliminates the need to change tank setup.

Consistent Detector Orientation

Better Results

3D SCANNER

Cross-Plane
(A) $\because \square \square \square /$
(A)

In-Plane

\square

Square Tank
Cross-Plane
In-Plane
(B)
$\because \square \square$

AutoSetup"

Less Subjective, Saves Time

Auto Level

3D SCANNER water sensor measures water surface relative to the scanning mechanism at three points and automatically adjusts the water tank leveling using two electric motors. Physically leveling the water tank facilitates fast and easy visual QA of the process and provides more accurate scanning.

Auto Center

3D SCANNER measures a $10 \times 15 \mathrm{~cm}$ beam to determine the center of the beam relative to the center of 3D SCANNER. Two electric motors then align the center of the 3D SCANNER with the beam center.

Auto Angle Offset

3D SCANNER uses a series of beam measurements to automatically establish in-plane and cross-plane home positions. The ring drive electric motor's zero position is set to the found crossplane direction.

Extended Scanning Ranges

No Tank Shifts

Square 3D water tanks cannot measure a full $40 \times 40 \mathrm{~cm}$ field at 30 cm depth and 100 cm SSD unless the user shifts the water tank twice, taking two measurements of two "halves" of the beam at different tank locations. This technique is time intensive and can introduce errors that compromise data quality.

The cylindrical shape of the 3D SCANNER enables the most efficient scanning ranges compared to square water tanks. A 65 cm scan range is possible without a shift of the 3D SCANNER. This allows a $40 \times 40 \mathrm{~cm}$ measurement at 30 cm depth and 100 cm SSD, without the inconvenience and potential errors involved in shifting the water tank. A 65 cm scan range is achieved with the offset detector holder, whereby two scans are merged and no tank shift is needed.

Square Tank MAX: $55 \mathrm{~cm}=$ Tank shift and repeat tank setup 3D SCANNER MAX: 65 cm = No tank shift
35% increase in scan range inline/crossline

Integrated Electronics

The 3D SCANNER design streamlines the connection and packaging of a

 3D water tank system with several features:
Single Cable

3D SCANNER utilizes the same power/data cable that is used for other Sun Nuclear instruments, saving the user from installing another cable in the bunker.

Connections

All 3D SCANNER accessories plug directly into the 3D
SCANNER eliminating the need for external junction boxes.

Electronics

The electronics housing attaches to the 3D SCANNER and contains the following:

- Electrometer Unit - A dual channel electrometer collects all field and reference data for the 3D SCANNER. The electrometer is guarded against extra cameral volume and provides exceptional specifications for low noise scan data that requires minimal processing
- Control Unit - 3D SCANNER control electronics for motors and other hardware

Integrated Electrometer

Dual measurement channels
Mounts directly to tank

Ring Drive

Precise positioning of the diameter drive to any orientation in the profile plane

Detector Holders

Field and reference holders are included

Vertical Drive

Precise positioning of the diameter drive to the desired depth in the water tank
Lead screw design

WaterProof PROFILER ${ }^{\text {TM }}$ \& TPR Ports

Input for available integrated Water-proof PROFILER

Input for available integrated 3D TPR ${ }^{\text {TM }}$ kit

Integrated Motor Controller
Paired with electrometer
Mounts directly to tank

Diameter Drive

Consistent detector orientation through the penumbra regardless of scan axis
650 mm scanning range
Tension belt design

Water Tank

Cylindrical PMMA acrylic design resists deformation

Smaller than square tanks (20% less water)

MiniLift Modes

Transport - fits through standard size doorways
Storage - requires less space for easy storage
Measurement - straddles the linac couch ring for stability

Intuitive Software Saves Time

3D SCANNER operates using SNC Dosimetry ${ }^{\text {M }}$ scanning software.
SNC Dosimetry is a modern software application designed to offer both familiar concepts from existing water tank conventions, as well as new tools that were not previously available with a 3D water tank system.

1. Queues

Pre-configured and custom queues organize and execute groups of scans. Queue results and analysis are displayed instantly and saved to a project

2. Database

All scans are indexed in a searchable database. Scan data can then be shared among users as needed.

3. Electrometer Mode

Collect point measurements through on-demand or automatic charge integration.

4. Layers

Unprocessed data and processing history is preserved and can be recalled as needed

5. Analysis

Selected scans provide
on-screen analysis, including Batch Scan Comparison with quantitative analysis.

6. Projects

Measurements may be organized in multi-level projects for customizable organization. Examples of projects include: annual QA and commissioning

7. Graphs

Scanned data is displayed graphically.

8. Processing Layers

Each processing function is treated as a unique layer of the scan data. The processing layers do not overwrite the original scan data, so users may revert to earlier unprocessed data at any time.

9. Multi-scan comparison tool

1-click quantitative analysis across data sets for inline, crossline, profiles, and depth scans

Accessories

3D SCANNER accessories

3D MiniLift'"

- Straddles the linac couch ring for stability
- Easily stored; requires less space
- Fits through standard size doorways

Breaks down easily for transport

WaterProof PROFILER ${ }^{\text {TM }}$

- 50.4 cm scan area with 127 SunPoint ${ }^{\oplus}$
 Diode Detectors

Quick connect to 3D SCANNER; no tools required
Detector size $0.8 \times 0.8 \mathrm{~mm}$ with 4 mm detector spacing

EDGE Detector ${ }^{\text {TM }}$

- Accurate penumbra characterization for all fields
- Ideal for steep dose gradients and small fields
- On Accuray ${ }^{\circledR}$ Recommended QA Equipment list
- 842 times smaller in volume than micro ion chambers
- 100 times more signal than micro ion chambers
- No dose volume averaging
- Accuracy for critical penumbra measurements
- Works with all common water phantoms

3D TPR ${ }^{\text {m }}$

- Less than 5 minutes to install - no tools required
- Works with 3D Reservoir for fast drainfill time
- 20 cm TPR drain measurement: 2.5 minutes
- 20 cm TPR fill measurement: 3.5 minutes
- Supports Varian Medical Systems ${ }^{\oplus}$, Elekta, Siemens and CyberKnife ${ }^{\oplus}$ systems

Varian Medical Systems ${ }^{\circledR}$

HalcyonTM System Kit
Couch Positioning Plate

- Index to couch provides alignment to coordinate system
- AutoSetup ${ }^{\text {Tw }}$ Routine
- SNC Dosimetry ${ }^{\text {™ }}$ v3.7
- System-specific scan support

Reference Detector ${ }^{\text {rM }}$

- Patented out-of-field reference detector for use in water tank scanning of photon energies
- Eliminates scanning chamber interference in small SRS fields Use with any field size
No need to move location for

Sun Nuclear Ion Chambers

SNC125c ${ }^{\text {™ }}$

- Enhanced penumbra without loss of signal strength
- Optimized to work with 3D Scanner
- Sensitivity of a 0.125 cm 3 penumbra closer to a micro-chamber

- SNC600c ${ }^{\text {TM }}$
- Classic Farmer chamber design
- Compatible with most existing slab phantoms and detector holders
- Improved accuracy through consistent orientation used by calibration laboratory

SNC350p ${ }^{\text {TM }}$

- Reference, field and scanning dosimetry of electron beams
Conforms to design principles stated by Dr. M.Roos
Well-guarded to reduce perturbation effects

Common Features

- Water-proof and fully guarded
- Meet IEC 60731 standards for reference class dosimeters
- Satisfies recommendations of dosimetry protocols (e.g., AAPM TG-51 and IAEA TRS-398)
- White chamber body allows easy visualization during setup and relative to cross hairs and lasers
- Vented to provide air-density correction and eliminate need for radioactive stability check device

FAQ

Why is the 3D SCANNER cylindrical?

1. Consistent detector orientation. The scanning detector is always in the ideal orientation (narrowest dimension perpendicular to the field edge), for crossline, inline and diagonal profiles. This eliminates effects of inconsistent detector orientation such as variable dose volume averaging, and delivers the sharpest possible penumbra.
2. More stable water surface. In a cylindrical tank the scanning detector always travels parallel to the scan rail, whereas in square tanks the entire rail travels to acquire inline profiles, and both rails travel for diagonal profiles, creating more ripples in the water. A cylindrical tank's curved walls also help to reduce and cancel ripples.
3. Fast fill and drain time. Faster fill and drain time are achieved due to a smaller tank volume (~20\% less water), an important advantage for TPR measurements. Fill/drain time is 3.5/2.5 minutes respectively
4. No tank shifts. The maximum scan range on any axis of 65 cm should require no tank shifts. A tank shift requires a change to the setup, compromising the stability of the original scanning setup.
5. Scanning volume. Due to the cylindrical shape, ring drive, and scan rail, nearly the entire volume of a cylindrical tank is useful for scanning

My beam is shaped square, should my water tank
also be shaped square?
No. The raw beam generated by the linear accelerator is actually not square in geometry, and is shaped by a round flattening filter, and trimmed by primary and secondary collimators. A cylindrical tank more closely matches the actual beam geometry than a square tank.

Can I bypass AutoSetup and setup manually?

Yes. There are two ways: 1) The user can individually command portions of AutoSetup. 2) The user can manually adjust any setup parameter (except hysteresis) via pendant or software.

AutoSetup aligns the 3D SCANNER to beam CAX automatically; however if the beam is slightly off or skewed will the automatic CAX setup be incorrect?
No. Not even if there is an asymmetric field or if symmetry is wrong. During the "Adjust the ring center's position to the central axis" step, the Linac collimator is rotated by 180 degrees in order to eliminate any asymmetries from the centering process.

What is the maximum scan field size of the 3D SCANNER?

Without tank shifts, the 3D SCANNER can scan up to 65 cm with the included offset detector holder, or 50 cm without the offset detector holder. The 3D SCANNER can scan a full $40 \times 40 \mathrm{~cm}$ field, with 5 cm tails at 100 cm SSD and at a depth of 30 cm with the offset detector holder. For a diagonal scan of a $40 \times 40 \mathrm{~cm}$ field at 30 cm depth, an 80 cm SSD is used.

Do I have to adjust the gain setting each time I start a new scan?

The 3D SCANNER electrometer has a very large dynamic range so the gain does not need to be reset between most scans. This includes high dose rate FFF beams

Do I have to purchase TPS export modules?

No. All available TPS export modules are included in the 3D SCANNER's SNC Dosimetry software. This can be a significant cost savings.

How is 3D SCANNER different from other systems regarding processing?

Each scan that has had processing retains a list of the processing layers, along with a time stamp of when the scan processing layer was added. Due to the 3D SCANNER's database, raw data is saved, and each scan can always be returned to a previous layer of processing, or returned to its raw state. One may also see processing changes already implemented by selecting individual prior layers without reverting the processed scan.

Can I make off axis scan measurements?

Yes. This is most often requested for Pinnacle ${ }^{3}$ and measuring intraleaf leakage. 3D SCANNER combines the Ring and Diameter Drive movements simultaneously to acquire off axis scan measurements.

How can I share data between colleagues and PCs?
SNC Dosimetry software has a "Save" function that will create files as .xml, .txt, or TPS-compatible .asci format, which allows sharing of data as with any other system that does not have a database. One may also create a database backup and send that to a colleague. The colleague can then open it as a new database on their system. The software can support multiple databases.

Why is a kit required for data collection with 3D SCANNER for the Varian Medical Systems ${ }^{\circledR}$ Halcyon"' System?
 The unique Couch Positioning Plate protects the treatment couch and indexes the 3D SCANNER to the optimal orientation and set up coordinates

Features and Specifications

Scanning

| Vertical (mm): | 400.0 |
| ---: | :--- | :--- |
| Diameter $(\mathrm{mm}):$ | 650.0 |
| Ring (degrees): | 330.0 |
| Motors: | Encoded stepper/servo |
| Scanning modes: | Continuous and step |
| Scanning Speed Range $(\mathrm{mm} / \mathrm{sec}):$ | Variable up to 16 |
| Scanning Accuracy $(\mathrm{mm}):$ | 0.1 |

Water Tank

Thickness Wall / Bottom (mm): 13 / 19
Height (mm): 673
Width (mm): 875
Diameter Inner (mm): 676
Water Capacity (L): 166
Weight Empty / Full (kg): 44 / 210

Software
Tank Centering: Automatic
Leveling: Automatic
Surface Detection: Automatic
TPS Export: Included

TPR/TMR Measurement

Drain Rate (cm/min): ~ 13
TPR Measurement Fill/Drain (min): $\sim 3.5 / 2.5$

Electrometer

| Warm up Time (min): | <1.0 |
| ---: | :--- | :--- |
| Charge: | 10 pC to no upper limit |
| Current: | $10 \mathrm{pA}-7.5 \mathrm{nA}$ |
| Leakage (pA): | <0.001 |
| Collection Interval (ms): | 50 |
| Voltage (V): | Adjustable, -400 to +400 |
| Non-linearity: | $\pm 0.1 \%$ |
| Repeatability: | $+/-0.25 \%$ |
| A/D Converter: | 16 bit |
| Linac Pulse Count: | Included with threshold
 detection |

Computer Hardware/Software Requirements

CPU:	$2.4 \mathrm{GHz} ; 2$ cores
RAM:	4 GB
Hard Drive Space:	4 GB
Operating System:	Windows 10 Pro 64 bit; check with
	representative for SQL Server or
	SQL Server Express requirements
USB Version:	2.0

3D MiniLift

Vertical Height Min. (mm):	570.0
Vertical Height Max (mm)	950.0
Vertical Stability (mm):	1.0
Configuration Dimensions L/W/H (mm) Measurement: Storage: Transport:	$\begin{aligned} & 1230.0 \times 1130.0 \times 584.0 \\ & 940.0 \times 630.0 \times 584.0 \\ & 1520.0 \times 720.0 \times 584.0 \end{aligned}$
Disassembled Dimensions L/W/H (mm) Automatic Leveling Platform: Lift: Frame:	$\begin{aligned} & 612.0 \times 612.0 \times 128.0 \\ & 305.0 \times 406.0 \times 508.0 \\ & 940.0 \times 592.0 \times 305.0 \end{aligned}$
Total weight (kg):	87.7 (Does not include leveling platform)
Individual Component Weight (kg):	Frame assembly: 45.7 Actuator assembly: 38.2 Handle: 3.8 Leveling Platform: 23.0

3D Reservoir

Max Fill / Drain Speed (min):	$7 / 5$
Dimensions L/W/H (cm):	$114.2 \times 65.0 \times 90.0$
Weight (Full / Empty, kg):	$228.0 / 39.0$
Capacity (L):	187.0
Fill and Empty Rate (L/min):	22.0
Ground Clearance $(\mathrm{mm}):$	130.0

Compatibility

FFF:	Yes
Stereotactic:	Yes
Applicable TPS Systems:	Yes
Varian Medical Systems ${ }^{\circledR}$	Yes with Kit
Halcyon"' System	

FFF: Yes

Corporate Headquarters 3275 Suntree Boulevard // Melbourne, FL 32940 USA

sunnuclear.com

